Calculating the True Value of Automated Packaging Systems

Introduction

For purchasing professionals, calculating return on investment (ROI) is essential for justifying large capital expenditures on packaging automation equipment. However, many companies make purchasing decisions based on incomplete financial analysis, considering only the most obvious costs and benefits. This shortsighted approach leads to poor investment decisions and missed opportunities for maximizing shareholder value. [1][2]

True ROI analysis examines all costs and benefits associated with packaging automation, including hidden expenses and hard-to-quantify improvements in efficiency and quality. When performed thoroughly, ROI analysis reveals that automated packaging systems typically generate returns far exceeding the returns from most alternative investments, with payback periods between 18-36 months for many applications. [3][4][5]

This comprehensive guide explains how to calculate true ROI for packaging automation, identifies commonly missed costs and benefits, and provides practical methods for comparing alternative equipment options to select the investment that maximizes financial returns.^{[6][7][8]}

Fundamentals of ROI Calculation

ROI expresses the financial return from an investment as a percentage of the investment amount. The basic ROI formula is straightforward, but proper application requires careful identification of all relevant costs and benefits. [9][3-1]

The Standard ROI Formula is:

ROI = (Net Annual Benefit / Total Equipment Cost) × 100

Where "Net Annual Benefit" represents the annual financial benefit generated by equipment, and "Total Equipment Cost" includes all costs associated with the investment. [3-2][6-1]

Example ROI Calculation: Suppose a company invests \$200,000 in an automated packaging machine. The machine generates \$150,000 in annual net benefits (savings plus revenue increases). The ROI calculation is:

 $ROI = (\$150,000 / \$200,000) \times 100 = 75\%$

This 75% ROI means the investment generates returns equal to 75% of the investment amount annually.^[3-3]

Payback Period is another critical metric. This calculation shows how long the investment takes to recover:

Payback Period = Total Equipment Cost / Annual Net Benefit

Using the same example:

Payback Period = \$200,000 / \$150,000 = 1.33 years (or approximately 16 months)

This means the company recovers its \$200,000 investment in just over one year. After payback, every dollar of annual benefit becomes pure profit. [9-1][3-4]

Internal Rate of Return (IRR) represents the discount rate at which the investment's net present value equals zero. For a \$40,000 machine generating \$25,000 annually in labor savings with a 10-year lifespan, the IRR would be approximately 15%. IRR provides a standardized way to compare packaging automation investments against alternative investments like bonds or stock market investments.^[9-2]

Understanding Total Cost of Ownership

One of the most critical mistakes in ROI analysis is underestimating the true cost of equipment ownership. Many purchasing professionals consider only the equipment purchase price, missing significant additional expenses.^{[10][2-1][1-1]}

Equipment Purchase Price represents just the beginning of costs. This is the base number that seems manageable, but represents perhaps only 40-50% of total equipment costs.^[2-2]

Delivery and Installation Costs typically add 5-15% to equipment cost. Large packaging machines may weigh several tons and require specialized transportation and professional installation. Installation complexity varies significantly—some equipment requires only a few days, while complex integrated systems might require weeks of setup. [1-2][2-3][9-3]

Training and Operator Development costs are frequently underestimated. Operators and maintenance technicians require comprehensive training to safely operate equipment, maximize production, and perform routine maintenance. Training programs may include onsite training from equipment manufacturers and travel costs for employees attending training. [2-4][9-4]

Integration and Modifications costs account for adapting equipment to specific production environments. Custom interfaces connecting equipment to existing production lines, modifications to facilities, and safety equipment additions might collectively cost \$20,000-\$50,000 for complex installations. [1-3][9-5]

Annual Maintenance and Support Costs extend throughout equipment lifespan. Service agreements covering routine maintenance, repairs, and technical support typically cost 3-8%

of equipment purchase price annually. A \$200,000 machine might generate \$6,000-\$16,000 in annual maintenance costs. [1-4][9-6]

Total Cost of Ownership Example: A \$200,000 packaging machine actually costs: [1-5]

Equipment purchase: \$200,000Delivery and installation: \$20,000

• Training: \$10,000

Integration/modifications: \$15,000First-year maintenance: \$10,000

Total first-year cost: \$255,000

Annual maintenance thereafter: \$10,000

Many companies that calculate ROI using only the \$200,000 equipment cost overstate returns by 25-30% compared to analysis including all true ownership costs.^{[2-5][1-6]}

Identifying and Quantifying Benefits

Benefits from packaging automation extend far beyond the most obvious labor cost savings. Comprehensive ROI analysis captures all meaningful improvements.^{[11][12][3-5][9-7]}

Labor Cost Savings represent the largest benefit source for most operations. Manual packaging typically requires 50-100% more workers than automated systems to achieve equivalent output. Labor savings calculations should include: [13][3-6]

- Wage and salary costs
- Benefits (health insurance, retirement contributions, payroll taxes)
- Supervisory and management overhead allocated to production workers
- Training and skill development costs

For a company paying \$18 per hour in wages plus \$8 per hour in benefits, eliminating three full-time packaging workers saves \$78,000 annually (3 workers \times 40 hours/week \times 50 weeks/year \times \$26 per hour). [12-1][3-7]

Increased Production Capacity and Speed generates revenue benefits. Automated machines typically package 50-100% more units per hour than manual operations. If a company's manual operation packages 150 units per hour while an automated system packages 300 units per hour, the company can either reduce labor (captured above) or increase sales. [13-1][3-8]

If the company can sell the additional output profitably, additional revenue exceeds \$200,000 annually. When analysis includes both labor reduction and additional sales, total benefits often double compared to labor-savings-only calculations. [12-2][13-2]

Material and Waste Reduction benefits are substantial. Automated systems use packaging materials more precisely, reducing waste by 10-20% compared to manual operations. For a company spending \$500,000 annually on packaging materials, a 15% waste reduction saves \$75,000 annually. Additionally, Al-enabled systems that prevent packaging defects reduce rework costs and scrap material expenses. [14][11-1][12-3]

Quality and Rework Cost Reduction delivers significant benefits. Manual packaging produces defect rates of 3-5%, while automated systems with quality control achieve defect rates below 1%. Reworking defective packages consumes labor, materials, and time. For a mid-sized operation, reducing defects prevents \$40,000-\$80,000 in annual rework costs. [12-4][13-3]

Reduced Downtime and Maintenance Costs benefit companies through predictable, preventive maintenance compared to emergency repairs. Better-maintained equipment breaks down less frequently, and when breakdowns occur, they happen during scheduled maintenance windows rather than during production. This predictability enables better production planning and avoids emergency overtime labor.^{[15][13-4]}

Worker Safety and Injury Reduction generates financial benefits through reduced workers' compensation insurance costs, fewer lost-time incidents, and reduced litigation risk. A mid-sized packaging operation might see workers' compensation insurance costs decrease 15-25% following automation implementation, representing \$20,000-\$50,000 in annual savings. [16][17]

Complete Benefits Example: A comprehensive analysis might show:

Labor cost savings: \$80,000

Additional sales revenue: \$120,000
Material waste reduction: \$40,000
Rework cost reduction: \$50,000
Insurance cost reduction: \$30,000

Downtime reduction: \$25,000Total annual benefits: \$345,000

This comprehensive analysis reveals substantially higher returns than considering labor savings alone (\$80,000). [3-9][12-5]

Hidden Costs and Benefits: The \$307 Opportunity

Research reveals that hidden costs often comprise 20-30% of total packaging operation expenses, yet remain invisible to standard financial analysis.^{[18][19][11-2]}

Material Waste Beyond Visible Scrap includes overpackaging where companies use more material than necessary. Many operations designed packaging years ago without

optimization, using 15-20% more material than required. Scrutinizing specifications can often reduce material usage without sacrificing protection or product presentation.^[11-3]

Inventory Write-offs from obsolete packaging materials represent another hidden cost. When product designs change or products are discontinued, remaining packaging inventory becomes stranded assets. Companies frequently fail to account for these write-offs, which accumulate 3-5% of total material costs.^[11-4]

Labor Inefficiencies and Training Gaps generate hidden costs through wasted time and rework. Untrained operators make mistakes, requiring correction and supervision consuming 5-15% of labor time. Comprehensive operator training reduces these inefficiencies, generating savings rarely captured in standard ROI calculations.^{[18-1][11-5]}

Equipment Downtime and Emergency Repairs create massive hidden costs. Unplanned downtime costs companies \$500-\$2,000 per hour in lost production when fully accounting for labor, opportunity cost, and customer impact. A single major equipment failure might cost \$50,000-\$100,000 including downtime, emergency repair costs, and overtime labor. [19-1][15-1][11-6]

Quantifying Hidden Costs: For a mid-sized operation with \$5 million annual revenue, hidden packaging costs often total \$300,000-\$500,000 annually. Equipment that reduces these hidden costs generates benefits substantially exceeding the cost reduction alone, creating synergistic returns exceeding standard ROI calculations. [18-2][11-7]

Comparing Financial Metrics: Beyond Simple Payback

While payback period is intuitive and commonly used, supplementary financial metrics provide more sophisticated analysis supporting better decisions. [20][21][9-8]

Net Present Value (NPV) accounts for the time value of money. A dollar received today is worth more than a dollar received in the future because money can be invested to earn returns. NPV discounts future benefits back to today's value using an appropriate discount rate (typically 10-15% for manufacturing investments). [21-1]

The NPV calculation is:

NPV = Σ [(Annual Cash Benefit / (1 + Discount Rate)^Year)] - Initial Investment

An NPV greater than zero indicates the investment generates returns exceeding the company's hurdle rate. Higher NPV indicates better investments. NPV accounts for cash flows across the equipment's entire lifespan, not just the payback period, making it superior to payback-only analysis.^{[20-1][21-2]}

Profitability Index divides present value of benefits by initial investment cost. A profitability index above 1.0 indicates the project generates more value than it costs. This metric facilitates comparing investments of different sizes—a \$500,000 investment generating

\$700,000 in benefits has a profitability index of 1.4, superior to a \$100,000 investment generating \$110,000 in benefits (index of 1.1).^[21-3]

Sensitivity Analysis tests how ROI changes when underlying assumptions change. Since actual results may differ from projections, sensitivity analysis reveals which assumptions most affect outcomes. For instance, if labor costs are 10% lower than projected, how does that change ROI? If equipment operates at only 80% of manufacturer-rated capacity, how is ROI affected?. By identifying sensitive variables, procurement professionals can focus monitoring on factors most affecting financial outcomes.^{[22][23][24]}

Risk-Adjusted Returns acknowledge implementation and operational risks. Traditional payback calculations assume achievement of projected benefits without adjustment for uncertainty. Risk-adjusted analysis applies reduction factors for technology risk (10-30%), implementation risk (15-40%), market risk (5-25%), and operational risk (10-35%).^[22-1]

Using risk-adjusted analysis, expected benefits are multiplied by a risk factor reflecting confidence in projections. A company 70% confident in achieving projected savings uses a 0.70 risk factor, adjusting \$345,000 expected benefits down to \$241,500. [22-2]

Practical ROI Analysis: Step-by-Step Approach

A systematic approach ensures comprehensive, accurate ROI calculations supporting sound purchasing decisions.^{[7-1][8-1][3-10]}

- **Step 1: Define Baseline Performance** by measuring current operations in detail. Document production speed (units per hour), quality metrics (defect rates), labor requirements, material usage, downtime frequency, and maintenance costs. This baseline enables calculating precise improvements from automation.^[7-2]
- **Step 2: Select Equipment and Get Detailed Quotes** from multiple vendors. Request specifications, capacity, capabilities, warranties, and maintenance requirements. Ask vendors to estimate productivity improvements and cost savings achievable with their equipment.^[7-3]
- **Step 3: Calculate Total Cost of Ownership** including all costs: purchase, delivery, installation, training, integration, and projected annual maintenance. Consult with installation contractors to validate installation cost estimates and timelines.^[7-4]
- **Step 4: Quantify Benefits** across all categories: labor savings, capacity increase, waste reduction, quality improvement, downtime reduction, and worker safety. Be conservative in estimates—use research showing typical improvements rather than optimistic vendor claims. [8-2][7-5]
- **Step 5: Perform Calculations** using payback period, ROI, NPV, and profitability index. Compare results across different equipment options to identify superior choices.^[7-6]

Step 6: Conduct Sensitivity Analysis by testing how results change if productivity improvements are 20% lower, if implementation takes longer, or if annual benefits are achieved more slowly.^{[23-1][22-3]}

Step 7: Document Assumptions clearly so decision-makers understand what results are based on. Record which cost and benefit estimates are based on company-specific data versus industry averages.^{[8-3][7-7]}

Real-World Example: Calculating ROI

A food packaging company manufactures 200 different product varieties with annual revenue of \$8 million. Currently employing eight full-time packaging operators, production speed is limited by manual labor. The company has identified an automated pouch packaging system potentially solving these constraints. [3-11][7-8]

Current Operation Baseline:

- 8 operators at \$45,000 annual salary (\$360,000 total labor)
- 150 units per hour packaging speed
- 4% defect rate requiring rework
- 15% overpackaging waste rate
- Annual maintenance and repairs: \$25,000

Proposed Equipment:

Purchase price: \$350,000

Installation and training: \$40,000

Delivery and setup: \$15,000

Annual maintenance contract: \$15,000

Projected Improvements:

Packaging speed: 300 units per hour (+100%)

Defect rate: 0.5% (85% reduction)

Overpackaging waste: 8% (47% reduction)

Required operators: 3 (62.5% labor reduction)

Benefit Calculations:

Labor savings: 5 operators × \$45,000 = \$225,000 annually

Material waste reduction: Current annual material cost ~\$2,000,000; 47% reduction in waste = \$940,000 saved, but conservative estimate of 5% of waste savings = \$47,000

Quality improvement savings: Current rework cost estimated at 4% of production value = \$320,000; improved defect rate reduces rework cost to below 1% = \$80,000, saving

Increased production value: Additional 150 units/hour × 40 hours/week × 50 weeks × \$1.50 profit margin = \$450,000 additional profit

Total annual benefits: \$225,000 + \$47,000 + \$240,000 + \$450,000 = \$962,000

ROI Calculation:

Total equipment cost: \$350,000 + \$40,000 + \$15,000 = \$405,000

 $ROI = (\$962,000 / \$405,000) \times 100 = 237\%$

Payback Period: \$405,000 / (\$962,000 - \$15,000 annual maintenance) = \$405,000 / \$947,000 = 0.43 years (approximately 5 months)

NPV Calculation (10-year lifespan at 12% discount rate):

Year 1-10 benefits: \$947,000 annually

NPV = \$947,000 × 5.65 (10-year factor at 12%) - \$405,000 = \$5,350,550 - \$405,000 =

\$4,945,550

This exceptionally positive financial analysis (237% ROI, 5-month payback, \$4.9 million NPV) overwhelmingly justifies the investment.^{[3-12][7-9]}

Common Analysis Mistakes to Avoid

Proper ROI analysis requires avoiding systematic errors that lead to poor decisions.^{[8-4][9-9]} [3-13]

Mistake 1: Considering Only Labor Savings results in severely understated benefits. Companies focusing exclusively on reducing operator count miss benefits from increased capacity, waste reduction, and quality improvement. [8-5][3-14]

Mistake 2: Using Vendor Projections Without Verification blindly accepts supplier claims often biased toward maximizing appeal. Research industry data showing typical improvements and apply conservative factors (80-90% of vendor claims) to projections. [8-6] [3-15]

Mistake 3: Ignoring Opportunity Costs of delay. Each year without equipment represents lost productivity and increased manual labor costs. The cost of waiting often exceeds the cost of deciding to automate. [8-7]

Mistake 4: Underestimating Implementation Costs and Timeline leads to budget overruns and delayed payback achievement. Build contingencies into cost estimates and timelines based on implementation complexity.^[8-8]

Mistake 5: Failing to Account for Maintenance and Support Costs understates true cost of ownership. Budget 5-8% of purchase price annually for ongoing maintenance.^{[10-1][1-7]}

Conclusion

Comprehensive ROI analysis transforms packaging automation from a risky capital expenditure into a clear, justified investment. When purchasing professionals calculate ROI properly—including all costs, capturing all benefits, and using appropriate financial metrics—the financial case for automation becomes overwhelmingly compelling. [9-10][7-10][3-16][8-9]

Most packaging automation investments generate payback periods of 12-36 months with ROI exceeding 75%, outperforming most alternative corporate investments. The key to capturing these exceptional returns is systematic, thorough analysis avoiding common calculation errors and missed benefit categories.^{[4-1][7-11][3-17][8-10]}

For procurement professionals, developing ROI analysis expertise directly enhances career value and organizational impact. By presenting clear financial justification for automation investments, you enable companies to make confident, well-informed capital decisions. By identifying hidden costs and comprehensive benefits, you transform risk perception around automation, enabling your company to compete more aggressively with automated processes delivering superior efficiency.^[8-11]

Begin your ROI analysis by carefully measuring current operations, documenting baseline costs and productivity metrics. Request detailed equipment quotes with performance projections. Calculate not just payback and ROI, but also NPV and profitability index to capture the full financial picture. Conduct sensitivity analysis to understand how results change with different assumptions. Present this comprehensive analysis to management, and watch as once-uncertain automation investments become obvious opportunities deserving immediate capital allocation. The financial returns justify comprehensive, professional ROI analysis—the single most valuable tool in a purchasing professional's toolkit for advancing automated packaging initiatives.

- 1. https://www.paramountglobal.com/knowledge/total-cost-ownership-packaging/ マママママ

- 4. https://vikingmasek.com/blog/how-long-does-it-take-to-see-roi-on-packaging-automation *← ←*
- 5. https://www.spackmachine.com/how-to-calculate-the-roi-on-a-potential-packaging-machine-investment/ ←
- 6. https://www.spackmachine.com/how-to-calculate-the-return-on-investment-of-an-automatic-packaging-machine/ ← ←

- 10. https://www.sunswell.com/az/news/how-to-calculate-the-total-cost-of-ownership-tco-for-a-filling-line.html https://www.sunswell.com/az/news/how-to-calculate-the-total-cost-of-ownership-tco-for-a-filling-line.html https://www.sunswell.com/az/news/how-to-calculate-the-total-cost-of-ownership-tco-for-a-filling-line.html https://www.sunswell.com/az/news/how-to-calculate-the-total-cost-of-ownership-tco-for-a-filling-line.html <a href="https://www.sunswell.com/az/news/how-to-calculate-the-total-cost-of-ownership-tco-for-a-filling-the-total-cost-of-ownership-tco-for-a-filling-the-total-cost-of-ownership-tco-for-a-filling-line.html <a href="https://www.sunswell.com/az/news/how-to-calculate-the-total-cost-of-ownership-tco-for-a-filling-the-total-cost-of-ownership-tco-for-a-filling-the-total-cost-of-ownership-tco-for-a-filling-the-total-cost-of-ownership-tco-for-a-filling-the-total-cost-of-ownership-tco-for-a-filling-the-total-cost-of-ownership-tco-for-a-filling-the-total-cost-of-ownership-tco-for-a-filling-the-total-cost-of-ownership-tco-for-a-filling-the-total-cost-of-ownership-tco-for-a-filling-the-total-cost-of-ownership-tco-for-a-filling-the-total-cost-ownership-tco-for-a-filling-the-total-cost-ownership-tco-for-a-filling-the-total-cost-ownership-tco-for-a-filling-the-total-cost-ownership-tco-for-a-filling-the-total-cost-ownership-tco-for-a-filling-the-total-cost-ownership-tco-for-a-filling-the-total-cost-ownership-tco-for-a-filling-the-total-cost-ownership-tco-for-a-filling-the-total-cost-ownership-tco-for-a-filling-the-total-cost-owner
- 12. $\underline{\text{https://www.aopackmachine.com/automated-packaging-improve-roi-guide/}} \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow$
- 13. https://www.spackmachine.com/automated-packaging-machines-efficiency-savings/ ← ← ← ← ←
- 14. https://dynamicweb.com/resources/insights/blog/the-top-8-benefits-of-packaging-automation-for-manufacturers-and-b2b-businesses-using-ecommerce ←
- 15. https://www.gwcnow.com/blog/gwc-blog-1/the-hidden-costs-of-ignoring-packaging-equipment-maintenance-70 ←
- 16. https://www.savoye.com/en/ressource/packaging-automation-4-reasons-to-choose-it-2/ ←
- 17. https://www.ghfilling.com/blog/how-does-a-packing-machine-reduce-labor-costs https://www.ghfilling.com/blog-machine-reduce-labor-costs https://www.ghfilling.com/blog-machine-reduce-labor-costs https://www.ghfilling.com/blog-machine-reduce-labor-costs https://www.ghfilling.com/blog-machine-reduce-labor-costs https://www.ghfilling.com/blog-machine-reduce-labor-costs <a href="https://www.ghfilling.com/blog-machine
- 18. https://www.linkedin.com/pulse/hidden-costs-packaging-line-inefficiency-how-tkzfe ↔ ↔
- 19. https://www.hmcproducts.com/blog-2/11-hidden-costs-of-buying-pouch-packaging-machines/ ← ←
- 20. https://lmsspada.kemdiktisaintek.go.id/mod/resource/view.php?id=98702 ← ←
- 21. https://nscpolteksby.ac.id/ebook/files/Ebook/Accounting/Principles of Corporate Finance 10edition (2011)/8. Chapter 5 Net Present Value and Other Investment Criteria.pdf ← ← ← ←
- 22. <u>https://consultsolon.com/automation-roi/</u> ← ← ← ←
- 23. https://analystprep.com/study-notes/cfa-level-2/sensitivity-analysis-scenario-analysis-and-simulation-analysis/ ← ←
- 24. https://www.deskera.com/blog/scenario-analysis-in-manufacturing/ ←
- 25. https://sparcktechnologies.com/what-is-the-roi-of-automated-packaging/ ←
- 26. https://www.planitpackaging.com/blog/buying-a-packaging-equipment-heres-how-to-calculate-roi-first
- 27. https://impack.ca/learning-center/calculating-return-on-investment-packaging-equipment ←
- 28. https://www.gep.com/blog/strategy/tco-in-spend-analytics-for-procurement-professionals https://www.gep.com/blog/strategy/tco-in-spend-analytics-for-procurement-professionals https://www.gep.com/blog/strategy/tco-in-spend-analytics-for-procurement-professionals https://www.gep.com/blog/strategy/tco-in-spend-analytics-for-procurement-professionals https://www.gep.com/blog/strategy/tco-in-spend-analytics-for-procurement-professionals https://www.gep.com/blog/strategy/tco-in-spend-analytics-for-procurement-professionals <a href="https://www.gep.com/blog/strategy/tco-in-spend-analytics-for-procurement-professionals https://www.gep.com/blog/strategy/tco-in-spend-analytics-for-procurement-professionals https://www.gep.com/blog/strategy/tco-in-spend-analytics-for-procurement-professionals https://www.gep.com/blog/strategy/tco-in-spend-analytics-for-procurement-professionals <a href="https://www.gep.com/gep.
- 29. https://www.acefilling.com/blog/what-is-the-roi-of-automating-your-manual-filling-process < ▶
- 30. https://www.sate.eu/ecosystem/return-on-investment ←
- 31. https://blog.skycell.ch/blog/redefining-the-total-cost-of-ownership-formula ←
- 32. https://vikingmasek.com/blog/how-calculate-roi-potential-packaging-machine-purchase ←
- 33. https://cargosapiens.com/en/blog/tco-total-cost-of-ownership/ ←
- 34. https://www.packvantage.com/roi-packaging-calculator https://www.packwantage.com/roi-packaging-calculator https://www.packwantage.com/roi-packaging-calculator https://www.packwantage.com/roi-packaging-calculator https://www.packwantage.com/roi-packaging-calculator https://www.packwantage.com/roi-packaging-calculator <a href="https://www.packwantage.com/roi-packaging-calculator-packaging-calculator-packaging-calculator-packaging-calcula
- 35. https://teinnovations.com/the-benefits-of-using-automated-food-packaging-equipment/ ←
- 36. https://www.accutekpackaging.com/from-manual-to-automatic-how-can-upgrading-your-packaging-line-save-your-money/ ←
- 37. https://www.rnaautomation.com/insight/cost-of-manual-labour-vs-automation-infographic/ ←
- 38. https://llumin.com/heavy-equipment-maintenance-costs-llu/ ←
- 39. https://www.yctdpack.com/blog/top-benefits-of-using-a-carton-packaging-machine-in-manufacturing ↔
- 40. https://www.eversmartbiscuitmachine.com/automated-packaging-machine-news/food-packaging-equipment-maintenance/ ←
- 41. https://www.industrialpackaging.com/blog/justifying-automatic-vs-manual-packaging-equipment ←
- 42. https://www.okcorp.com/packaging-news/the-benefits-of-switching-to-an-automated-packaging-line/ ←
- 43. https://progressiverobotics.ai/robotic-palletizing-roi-key-metrics/ < ▶
- 44. https://www.shjlpack.com/info/roi-analysis-for-automated-coil-packing-lines/ ←
- 45. https://smcdata.com/roi-success-stories/ ←

- 46. https://www.linkedin.com/pulse/real-case-study-roi-using-second-hand-robot-jobs-alessandro-tenti-gnmjf ←
- 47. https://nscpolteksby.ac.id/ebook/files/Ebook/Accounting/Principles of Corporate Finance 10edition (2011)/9. Chapter 6 Making Investment Decisions with the Net Present Value Rule.pdf ←
- 48. https://openaccess.city.ac.uk/id/eprint/12696/6/RASensitivity_accepted.pdf ←
- 49. https://meyers.com/meyers-blog/2-smart-packaging-roi-real-benefits-hidden-costs-and-how-to-capture-maximum-value/ https://example.com/meyers-blog/2-smart-packaging-roi-real-benefits-hidden-costs-and-how-to-capture-maximum-value/ <a href="https://example.com/meyers-blog/2-smart-packaging-roi-real-benefits-hidden-costs-a
- 50. https://www.atlantis-press.com/article/125982616.pdf ←
- 51. https://us.nttdata.com/en/blog/2023/june/packaging-automation-making-the-financial-case https://us.nttdata.com/en/blog/2023/june/packaging-automation-making-the-financial-case https://us.nttdata.com/en/blog/2023/june/packaging-automation-making-the-financial-case https://us.nttdata.com/en/blog/2023/june/packaging-automation-making-the-financial-case https://us.nttdata.com/en/blog/2023/june/packaging-automation-making-the-financial-case <a href="https://us.nttdata.com/en/blog/2023/june/packaging-automation-making-the-financial-case <a href="https://us.nttdata.com/en/blog/2023/june/packaging-automation-making-the-financial-case <a href="https://us.nttdata.com/en/blog/2023/june/packaging-automation-making-the-financial-case <a href="https://us.nttdata.com/en/blog/2023/june/packaging-automation-making-automati
- 52. https://www.sciencedirect.com/science/article/abs/pii/S1067991X04001816 ←
- 53. https://www.onetrust.com/blog/from-risk-to-return-how-to-measure-the-roi-of-your-risk-management-program/ ←
- 54. https://www.youtube.com/watch?v=AQy25sJ8OTs https://www.youtube.com/watch?v=AQy25sJ8OTs → https://www.youtube.com/watch?v=AQy25sJ8OTs → https://www.youtube.com/watch?v=AQy25sJ8OTs https://www.youtube.com/watch?v=AQy25sJ8OTs https://watch?v=AQy25sJ8OTs https://www.youtube.com/watch?v=AQy25sJ8OTs <a href="http
- 55. https://www.poems.com.sg/glossary/financial-terms/net-present-value/ ←
- 56. https://inkjetinc.com/blogs/default-blog/calculating-a-strong-return-on-investment-for-packaging-equipment ←
- 57. https://egyankosh.ac.in/bitstream/123456789/90793/3/Unit-5.pdf ←
- 58. https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/aisy.202500064 <a href="https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/aisy.202500064 <a href="https://advanced.onlinelib